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Transition to plastic motion as a critical phenomenon
and anomalous interface layer of a 2D driven vortex lattice
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Abstract. The dynamic transition between ordered flow and plastic flow is studied for a two-dimensional
driven vortex lattice, in the presence of sharp and dense pinning centers, from numerical simulations. For
this system, which does not show smectic ordering, the lattice exhibits a first order transition from a
crystal to a liquid, shortly followed by the dynamical transition to plastic flow. The resistivity provides a
critical order parameter for the latter, and critical exponents are determined in analogy with a percolation
transition. At the boundary between a pinned region and an unpinned one, an anomalous layer is observed,
where the vortices are more strongly pinned than in the bulk.

PACS. 64.60.Ht Dynamic critical phenomena – 74.60.Ge Flux pinning, flux creep and flux-line lattice
dynamics

1 Introduction

Following extensive studies on the effect of disorder on
the static vortex lattice, the physics of the vortex lattice
with random quenched disorder and driven by a uniform
force has recently attracted much attention. Interacting
systems, forming periodic structures at equilibrium, were
already the subject of much interest since the earlier stud-
ies of charge density waves [1,2]. The complexity of the
depinning phenomenon was soon pointed out, in the sense
that the description of the depinning threshold by a crit-
ical phenomena is no longer valid when one takes into
account the possibility of topological defects within the
periodic structure [2,3]. Plasticity, which is commonly ob-
served closed to the depinning threshold, is a dramatic
illustration in the case of the two dimensional vortex lat-
tice. There have been several investigations of the driven
vortex “phase diagram” which have enriched the canonical
description [4]: pinned vortex glass - plastic flow - moving
crystal as the driving force is increased. Amongst these,
numerical simulations of two dimensional vortex assem-
blies, initiated by the work of Brandt [5], have very often
accompanied theoretical progress on the subject. After the
proliferation of lattice defects was put into evidence, sug-
gesting a dynamic first order melting transition at the oc-
currence of plastic flow [4,6], numerical simulations [7–9]
pointed out the existence at higher drive and for a soft lat-
tice of a moving anisotropic solid with a finite transverse
critical force, identified as a smectic state (with transverse
periodicity and liquid longitudinal order) from theoretical
arguments in reference [10]. Recently, Kolton et al. in-
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troduced a “frozen transverse solid” beyond this smectic
regime, characterized by a drop of the Hall noise [11]. In
a general way, there is often some confusion about the
exact nature of the “transition”. “Dynamical transition”
and “phase” are often employed in place of “crossover” or
“dynamic regime”, without further justification. Indeed,
there seems to be up to now only one strong suggestion
of a genuine dynamical transition in the works in refer-
ences [4] and [8]. The fact that the notion of dynamical
transition is itself defined only with difficulty (see Ref. [2])
has certainly contributed to this situation. It is not clear,
for instance, whether one should try to use some dynam-
ical quantity – such as the correlation length of the local
velocities – as was done in reference [2], or if one should
use some instantaneous, topological one – such as the con-
centration of defects or the hexatic order parameter in ref-
erences [4] and [8] – in the search for an order parameter.
Here, it is shown that a simple system, not showing any
intermediate smectic order between the ordered and the
plastic flow, exhibits a second order like transition to the
plastic regime.

2 Experimental details

A two dimensional lattice subjected to a uniform driving
force (applied along the y-axis, hereafter denoted longitu-
dinal direction) in the presence of pins is simulated, using
the force equation:

fvv(r) + fp(r) + fB0(x) + J ∧ Φ0 − η ṙ = 0. (1)

The geometry is analogous to the one of a Corbino disk
experiment: the two edges at y = const. are subjected
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to a periodic boundary condition; the ones at x = const.
are subjected to an external magnetic field, B0, which is
simulated by an extra force fB0 acting on each vortex,
perpendicular to the edges. The force, fB0(x), acting on a
vortex at a distance x from the edge, is that imposed by
a semi-infinite vortex lattice at a distance a0 + x, where
a0 = (Φ0/B)1/2 is the flux lattice spacing at equilibrium.
Flux lines are assumed rigid rods and the force per unit
length between vortices separated by a distance r is [13]:

fvv(r) = (AV /λ)K1 (r/λ) (2)

where K1 is a Bessel function. This is strictly a good ap-
proximation only in the case of vortex lines (rods) and
for 2D vortices a logarithmic interaction should be used.
The interaction between vortices was cut at a distance
5λ, using an interpolation to zero. This was done in or-
der to avoid spurious distortions of the equilibrium lattice
from the Abrikosov lattice or the introduction of topolog-
ical defects, as was shown to occur for a sharp cutoff in
reference [14].

The sample dimensions were 100 a0 along x-axis and
70 a0 along y-axis. Strong pinning centers are randomly
distributed in the sample. A pin free region was left for
x < 25 a0 and x > 75 a0. Doing so, a defect free lat-
tice is obtained at the edges of the sample, providing well
defined boundary conditions. The density of the pinning
sites is nP = BΦ/Φ0, with Φ0 the flux quantum and BΦ
the “matching field” for which an equilibrium flux line lat-
tice shows the density of flux lines nV = nP. The force per
unit length exerted by a pin at a distance r from the line
is given by:

fp(r) = (2 AP/rP) (r/rP); for r ≤ rP, 0 for r > rP. (3)

The pinning force is exactly balanced by the Lorentz force,
J ∧ Φ0, for J = J0 = 2 AV/rP Φ0 (in the following, j =
J/J0). In the present study, the following parameters were
used: λ = 1.57 a0, rP = 4.9×10−2 a0, AP/AV = 2.5×10−2

and BΦ = 6 B. Using the notations in [5], this corresponds
to sharp, dense and strong (AP/r0 a0 c66 � 1) pins. The
sample contained approximately NV = 7000 vortices and
25 000 pins.

3 Results and discussion

Vortices trajectories are shown in Figure 1. At first sight,
they display a striking feature: as the driving current de-
creases and the trajectories evolve from correlated chan-
nels to branched trajectories, the vortices are first pinned
at the interfaces between the pinned and the unpinned
region. This is in contradiction with the intuition gained
from fluid dynamics physics, where one would expect the
average velocity of the fluid to decrease monotonically
from the one for unpinned vortices to the one of vortices
slowed down by solid friction. Rather, as shown in Fig-
ure 2, the average velocity first drops to a minimum right
at the interface between the pinned and the unpinned re-
gion, and then grows to some roughly uniform value at

Fig. 1. Vortices trajectories under uniform driving current
density applied along x-axis. Top left and right: j = 0.31 and
0.295, bottom: 0.27 and 0.24.
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Fig. 2. Average y-velocity component profile. The pinning cen-
ter density is non zero where x ≥ 0. For clarity, results for each
curve were rescaled along the vertical axis.

a distance ≈ 5 a0 from the interface. The magnitude of
this anomalous boundary layer effect may be measured as
the ratio of the average velocity in the layer, to the one
far away in the pinned region (Fig. 3c). Dynamics regimes
were characterized using physical quantities as commonly
done in flux lattice simulations [7,9,11]. As shown in Fig-
ure 3, the system exhibits a sharp departure from a linear
V − I characteristic; an onset of the voltage noise mea-
sured in the direction transverse to the average flux flow;
an onset of the lattice diffraction peaks widening as well
as the onset of the anomalous layer effect at j1 ' 0.33.
Close to this value, at j2 ' 0.305, the voltage derivative,
dV/dJ , shows a sharp peak; diffraction peaks vanish and
the layer effect saturates. The analysis of the structure fac-
tor S(k) = n−1

V |
∑
i ei k ri |2 on an annulus which overlaps

the first Brillouin zone diffraction peaks (Fig. 4) shows the
progressive evolution of the central region of the sample
from a well ordered hexagonal lattice at j = j1 to a liquid
at j2. In between, there is no evidence in the diffraction
intensity for an asymmetry between the average flux flow
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Fig. 3. (a) filled: average voltage along the main flow, com-
puted in the pinned region, away from the anomalous layer;
(a) empty: voltage derivative. (b) points: difference between
voltage in (a) and the free flux flow voltage; (b) line: fit to
V0(1− j/jC)β, where jC = 0.304 ± 0.001 and β = 0.34 ± 0.02.
(c) crosses: transverse Hall noise; (c) circles: average velocity in
the anomalous layer, normalized to that of the bulk; (c) trian-
gles: inverse of the width of the diffraction peak at k = (a0, 0).
The vertical line at j = 0.304 marks the critical driving cur-
rent, as given by the fit in (b); the one at j = 0.33, the onset
of departure from the free flux flow potential in (a).

direction and the one transverse to it. Following refer-
ence [9], the regime at j ≤ j2 is that of the plastic flow of
the amorphous solid. The transition region j2 < j < j1 be-
tween the plastic regime and the ordered state differs from
the ones described in [9] or [11], as we find no evidence for
the asymmetry needed in the diffraction intensity for a
smectic order or an order intermediate between a smectic
and a crystal. Also, the transition regime width observed
here is only about 10% of the critical value for the plastic
to quasi-ordered regime current, while values larger than
30% were found in [9]. These differences are due to pa-
rameters much different from the ones used in [9]. Here,
pinning sites are dense and almost point like (nP/nV = 6
and a0/rP = 25), while the pinning density is comparable
to the vortex density and pinning sites are extended in [9]
(nP/nV = 1.4 and ab/rP = 4). As a result, vortices do not
sense here the asymmetry of the pinning potential (when
it is tilted by the driving force) as they do for extended
defects, and the smectic regime does not occur.

Fig. 4. Polar plot (logarithmic units) of the instantaneous
structure factor, after radial integration over an annulus which
overlaps the diffraction peaks in the first Brillouin zone (the
flux lattice is sampled in the pinned region, away from the
anomalous layer). The zero angle axis points along the recip-
rocal direction transverse to the average flux flow.

Within the plastic regime, the evolution of the chan-
nels resembles that of a percolation transition, and the
transition between the ordered flow and the plastic regime
may be viewed as the percolation of dynamic flux chan-
nels in the transverse direction. This similarity was al-
ready noticed earlier in [8]. The analysis of the resistivity
quantitatively demonstrates the validity of a critical phe-
nomenon approach. As seen in Figure 3b, the resistivity
may be fitted to a critical order parameter of the form
(1 − j/jC)β , with β = 0.34 ± 0.02. The critical driving
force obtained in this way, jC , is within fitting uncertainty
identical to j2. The restricted intermediate regime, as ob-
served here, might be crucial for the observation of the
critical behavior, as it tends to smear out the transition.
The interpretation of the anomalous layer effect – which
is fully developed once one has entered the plastic dynam-
ical phase (as defined from the critical analysis above) –
appeals for a better understanding of the latter. Char-
acterization of the instantaneous structure, such as the
structure factor displayed above, is useless to the study
of the plastic phase: the autocorrelation function of the
instantaneous vortices positions, C(k) = 〈ρ(r) ρ(r + k)〉r,
where ρ(r) =

∑nV
i=1 δ(ri) only confirms an evidence for

a liquid order (Fig. 5). Considering the existence of two
distinct vortices populations [15]: a rapidly moving en-
semble of vortices along quasi static channels and quasi
pinned ones, one may also define the velocity-weighted au-
tocorrelation function, CV(k) = 〈ρV(r) ρV(r + k)〉r where
ρV(r) =

∑NV
i=1 δ(ri) ṙi. This essentially measures the cor-

relation amongst the most mobile vortices. As can be
seen in Figure 5, the function evolves from the one of
a liquid to the one characteristic of isolated flux chan-
nels (two peaks at k = (±a0, 0)) as j decreases. Both
C(k) and CV(k) show that second neighbor correlations are
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Fig. 5. Gray scale maps of autocorrelation functions. Clock-
wise: j = 0.31, 0.295, 0.27, 0.24. Left upper quadrant:
autocorrelation function of the instantaneous lattice, C(k).
Left lower quadrant: autocorrelation function of the instan-
taneous lattice, weighted by the y-velocity component, CV(k).
Right half: autocorrelation function of the vortices trajectories,
weighted by the y-velocity component, CC(k). The average flux
flow is horizontal.

strongly damped in the transverse direction. However, cor-
relations between vortices may be found that are less de-
manding than the ones uncovered by the transformations
of the instantaneous lattice. The autocorrelation function
of the channels, defined as: CC(k) = 〈ρt(r) ρt(r + k)〉r
where ρt(r) =

∫ t
0 ρV(r) dt and t is a time large enough so

that the most mobile vortices have moved by a distance
larger than a0, provides evidence – close to the transition
– for stronger transverse correlations between such chan-
nels than the ones uncovered by C(k) or CV(k) (Fig. 5).
This means that channels tend to correlate in the direction
transverse to the average flux flow.

The qualitative analogy with percolation and the defi-
nition of a critical order parameter, as shown above, both
appeal for a definition of dynamic clusters. This is done
in the following way: first, ρt(r) is computed as defined
above, thus providing some snapshots of the channels.
Then, the pattern defined in this way is filtered from
frequencies larger than a−1

0 (this ensures that two con-
tiguous channels do belong to the same cluster). Finally,
one-dimensional clusters are defined, as the line segments
perpendicular to the average flux flow that are entirely
contained within the filtered channels (Fig. 6). Such a def-
inition takes into account the anisotropy of the problem
and ensures that an infinite cluster is found at the tran-
sition. Although it provides an infinite number of clusters
for each sample, it allows the study of cluster distributions
as commonly done in the study of percolation [16]. The

Fig. 6. Channel structure (j = 0.27), filtered from frequencies
higher than a−1

0 . Shown as a white line is a one-dimensional
cluster of size s.
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Fig. 7. Mean cluster size, normalized to a2
0. The line is a fit

to (1− j/j2)−γ with γ = 1.2± 0.02.

first infinite cluster is found at j = j2, in agreement with
the critical analysis of the resistivity. As shown in Figure 7,
it is found that the mean cluster size, S =

∑
s s

2 ns scales
close to j2 as (1−j)−γ with γ = 1.2±0.02. For j < 0.2, the
mean cluster size saturates to S = a2

0, meaning that one
enters a regime of isolated flux channels. This agrees with
CC(k) in Figure 5, where it is seen that the first neighbor
correlation roughly become isotropic below j ≈ 0.2. Fol-
lowing the analogy with percolation, one may also define
a correlation length, ξ, which diverges at j2. Then, the
saturation observed for S may be directly interpreted as
the decrease of ξ down to the average flux line spacing, a0.
Within this description, it could be appealing to interpret
the existence of the anomalous interface layer as a “prox-
imity effect”. However, the order parameter – as defined
above – should in this case continuously increase from
zero in the ordered phase, to the value of the bulk over a
distance comparable to ξ, whereas it is anomalously large
in the pinned layer. Also, the thickness of the anomalous
layer should strongly depend upon j, which is not observed
in Figure 2. A more plausible interpretation for the effect
is in fact a topological one. The transverse wandering of
channels – an alternative view for the cluster distribution
and the fractal topology of the plastic phase – is strongly
suppressed at the interface with the ordered phase. Be-
sides the occurrence of the ordered phase, the occurrence
of a pinned region at the interface provides another way to
pin the transverse excursions of the vortices as imposed by
the proximity of the crystal structure, hence the observed
effect. However, this piece of explanation does not provide
any estimation for the width of the layer. This shows that,
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although the present analysis provides some evidence for
the existence of a dynamical plastic phase and a second
order like transition, we still lack a complete understand-
ing for the pinned, driven vortex lattice.

I gratefully acknowledge valuable help from S. Ravy in the
handling of numerical diffraction data. The author is grate-
ful to the IDRIS institute for providing computer time on its
vectorial computer.

References

1. H. Fukuyama, P.A. Lee, Phys. Rev. B 17, 535 (1972).
2. D.S. Fisher, Phys. Rev. B 31, 1396 (1985).
3. S.N. Coppersmith, A.J. Millis, Phys. Rev. B 44, 7799

(1991).
4. A.E. Koshelev, V.M. Vinokur, Phys. Rev. Lett. 73, 3580

(1994).
5. E.H. Brandt, Phys. Rev. Lett. 50, 1599 (1983).

6. U. Yaron, P.L. Gammel, D.A. Huse, R.N. Kleiman,
C.S. Oglesby, E. Bucher, B. Batlogg, D.J. Bishop, K.
Mortensen, K.N. Clausen, Nature 376, 753 (1995).

7. K. Moon, R.T. Scalettar, G.T. Zimanyl, Phys. Rev. Lett.
77, 2778 (1996).

8. R. Seungoh, M. Hellerqvist, S. Doniach, A. Kapitulnik, D.
Stroud, Phys. Rev. Lett. 77, 5114 (1996).

9. C.J. Olson, C. Reichhardt, F. Nori, Phys. Rev. Lett. 81,
3757 (1998).

10. L. Balents, M.C. Marchetti, L. Radzihovsky, Phys. Rev.
Lett. 78, 751 (1997); T. Giamarchi, P. Le Doussal, Phys.
Rev. Lett. 78, 752 (1997).

11. A.B. Kolton, D. Dominguez, N. Gronbech-Jensen, Phys.
Rev. Lett. 83, 3061 (1999).

12. M. Feigel’man, V. Geshkenbeim, A. Larkin, V. Vinokur,
Phys. Rev. Lett. 63, 2303 (1989).

13. E.H. Brandt, J. Low Temp. Phys. 53, 41 (1983).
14. H. Fangohr, A.R. Rice, S.J. Cox, P.A.J. de Groot, G.J.

Daniell, K.S. Thomas, J. Comput. Phys. 162, 372 (2000).
15. M.C. Faleski, M.C. Marchetti, A.A. Middleton, Phys. Rev.

B 54, 12427 (1996).
16. D. Stauffer, Introduction to percolation theory (Taylor and

Francis, 1985).


